Does handgrip strength effect pulmonary function in healthy children?
Abstract views: 176 / PDF downloads: 97
DOI:
https://doi.org/10.5281/zenodo.8353708%20Keywords:
Handgrip strength, Respiratory function, ChildrenAbstract
The present study examined the relationship between hand grip strength and pulmonary functions of healthy children and the aim was to use regression model and hand grip strength as a practical tool to predict pulmonary functions. The study was designed as cross-sectional and analytical. A total of 755 healthy children (age= 9.38±0.48) participated in the study voluntarily. Hand grip strength and respiratory function tests were applied to the children. In statistical analysis, Pearson correlation and linear regression model were used. A significant correlation was found between right and left hand grip strength and FVC, FEV1 and PEF (p<0.05). In addition, while the left hand grip strength had a significant effect on the lung function parameters FVC, FEV and PEF (p<0.05), it was found that the right hand grip strength was not a significant predictor of the parameters (p> 0.05). As a result, it was concluded that there are correlations between HGS and functional respiratory parameters in children, just as in adults and patient groups. In order to analyse the correlations between HGS and respiratory functions more clearly, it is recommended to examine important factors such as different age, activity levels and gender together in new studies.
References
Artero, E. G., Ruiz, J. R., Ortega, F. B., España‐Romero, V., Vicente‐Rodríguez, G., Molnar, D., ... et al. (2011). Muscular and cardiorespiratory fitness are independently associated with metabolic risk in adolescents: The HELENA study. Pediatric Diabetes, 12(8), 704-712.
Bae, J. Y., Jang, K. S., Kang, S., Han, D. H., Yang, W., & Shin, K. O. (2015). Correlation between basic physical fitness and pulmonary function in Korean children and adolescents: a cross-sectional survey. Journal of Physical Therapy Science, 27(9), 2687–2692.
Bhatti, U., Rani, K., & Memon, M. Q. (2014). Variation in lung volumes and capacities among young males in relation to height. Journal of Ayub Medical College, Abbottabad : JAMC, 26(2), 200–202.
Bohannon, R. W. (2015). Muscle strength. Current Opinion in Clinical Nutrition and Metabolic Care, 18(5), 465–470.
Burchfiel, C. M., Enright, P. L., Sharp, D. S., Chyou, P.-H., Rodriguez, B. L., & Curb, J. D. (1997). Factors Associated With Variations in Pulmonary Function Among Elderly Japanese-American Men. Chest, 112(1), 87–97.
Cichosz, S. L., Vestergaard, E. T., & Hejlesen, O. (2018). Muscle grip strength is associated to reduced pulmonary capacity in patients with diabetes. Primary Care Diabetes, 12(1), 66–70.
Çankaya, S., Çakıcı, H. A., Yıldız, E., & Aksoy, Y. (2020). Analysis of athletes’ mental training practices and self-confidence levels. Turkish Studies - Social, 15(4), 1805-1821.
Da Silva, T. K., Perry, I. D. S., Brauner, J. S., Wender, O. C. B., Souza, G. C., & Vieira, S. R. R. (2018). Performance evaluation of phase angle and handgrip strength in patients undergoing cardiac surgery: prospective cohort study. Australian Critical Care, 31(5), 284-290.
Davies, G. J. (1992). Compendium of isokinetics in clinical usage and rehabilitation techniques. Simon & Schuster.
Deary, I. J., Whalley, L. J., Batty, G. D., & Starr, J. M. (2006). Physical fitness and lifetime cognitive change. Neurology, 67(7), 1195–1200.
Holmes, S., Allen, S., & Roberts, H. (2017). Relationship between lung function and grip strength in older hospitalized patients: a pilot study. International Journal of Chronic Obstructive Pulmonary Disease, (12), 1207–1212.
Hornby, S. T., Nunes, Q. M., Hillman, T. E., Stanga, Z., Neal, K. R., Rowlands, B. J., … et al. (2005). Relationships between structural and functional measures of nutritional status in a normally nourished population. Clinical Nutrition, 24(3), 421–426.
Illi, S. K., Held, U., Frank, I., & Spengler, C. M. (2012). Effect of respiratory muscle training on exercise performance in healthy individuals: a systematic review and meta-analysis. Sports Medicine, (42), 707-724.
Jeong, M., Kang, H. K., Song, P., Park, H. K., Jung, H., Lee, S.-S., … et al. (2017). Hand grip strength in patients with chronic obstructive pulmonary disease. International Journal of Chronic Obstructive Pulmonary Disease, (12), 2385–2390.
Jiménez-Pavón, D., Ortega, F. B., Valtueña, J., Castro-Piñero, J., Gómez-Martínez, S., Zaccaria, M., … et al. (2012). Muscular strength and markers of insulin resistance in European adolescents: the HELENA Study. European journal of Applied Physiology, (112), 2455-2465.
Johansson-Strandkvist, V., Backman, H., Roding, J., Stridsman, C., & Lindberg, A. (2016). Hand grip strength is associated with forced expiratory volume in 1 second among subjects with COPD: report from a population-based cohort study. International Journal of Chronic Obstructive Pulmonary Disease, (11), 2527–2534.
Jung, D. H., Shim, J. Y., Ahn, H. Y., Lee, H. R., Lee, J. H., & Lee, Y. J. (2010). Relationship of body composition and C-reactive protein with pulmonary function. Respiratory Medicine, 104(8), 1197–1203.
Kim, N. S. (2018). Correlation between grip strength and pulmonary function and respiratory muscle strength in stroke patients over 50 years of age. Journal of Exercise Rehabilitation, 14(6), 1017–1023.
Koopman, J. J. E., Van Bodegom, D., Van Heemst, D., & Westendorp, R. G. J. (2015). Handgrip strength, ageing and mortality in rural Africa. Age and Ageing, 44(3), 465–470.
Kubota, H., & Demura, S. (2011). Gender differences and laterality in maximal handgrip strength and controlled force exertion in young adults. Health, 3(11), 684–688.
Lee, S. H., Kim, S. J., Han, Y., Ryu, Y. J., Lee, J. H., & Chang, J. H. (2017). Hand grip strength and chronic obstructive pulmonary disease in Korea: an analysis in KNHANES VI. International Journal of Chronic Obstructive Pulmonary Disease, (12), 2313–2321.
Leong, D. P., Teo, K. K., Rangarajan, S., Lopez-Jaramillo, P., Avezum, A., Orlandini, A., … et al. (2015). Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study. The Lancet, 386(9990), 266-273.
Martinez, C. H., Diaz, A. A., Meldrum, C. A., McDonald, M. L. N., Murray, S., Kinney, G. L., ... et al. (2017). Handgrip strength in chronic obstructive pulmonary disease. Associations with acute exacerbations and body composition. Annals of the American Thoracic Society, 14(11), 1638-1645.
Mgbemena, N., Jones, A., & Leicht, A. S. (2022). Relationship between handgrip strength and lung function in adults: A systematic review. Physiotherapy Theory and Practice, 38(12), 1908-1927.
McGrath, R. P., Kraemer, W. J., Snih, S. Al, & Peterson, M. D. (2018). Handgrip strength and health in aging adults. Sports Medicine, 48(9), 1993–2000.
Mgbemena, N. C., Aweto, H. A., Tella, B. A., Emeto, T. I., & Malau-Aduli, B. S. (2019). Prediction of lung function using handgrip strength in healthy young adults. Physiological Reports, 7(1), e13960.
Moy, F. M., Darus, A., & Hairi, N. N. (2015). Predictors of Handgrip Strength Among Adults of a Rural Community in Malaysia. Asia Pacific Journal of Public Health, 27(2), 176–184.
Ortega, F. B., Artero, E. G., Ruiz, J. R., Espana-Romero, V., Jimenez-Pavon, D., Vicente-Rodriguez, G., … et al. (2011). Physical fitness levels among European adolescents: the HELENA study. British Journal of Sports Medicine, 45(1), 20–29.
Porto, J. M., Nakaishi, A. P. M., Cangussu-Oliveira, L. M., Júnior, R. C. F., Spilla, S. B., & de Abreu, D. C. C. (2019). Relationship between grip strength and global muscle strength in community-dwelling older people. Archives of Gerontology and Geriatrics, (82), 273-278.
Rantanen, T., Masaki, K., He, Q., Ross, G. W., Willcox, B. J., & White, L. (2012). Midlife muscle strength and human longevity up to age 100 years: a 44-year prospective study among a decedent cohort. AGE, 34(3), 563–570.
Ren, W. Y., Li, L., Zhao, R. Y., & Zhu, L. (2012). Age-associated changes in pulmonary function: a comparison of pulmonary function parameters in healthy young adults and the elderly living in Shanghai. Chinese Medical Journal, 125(17), 3064–3068. 2
Ro, H. J., Kim, D. K., Lee, S. Y., Seo, K. M., Kang, S. H., & Suh, H. C. (2015). Relationship between respiratory muscle strength and conventional sarcopenic ındices in young adults: A preliminary study. Annals of Rehabilitation Medicine, 39(6), 880.
Romer, L. M., & Polkey, M. I. (2008). Exercise-induced respiratory muscle fatigue: implications for performance. Journal of Applied Physiology, 104(3), 879-888.
Rożek-Piechura, K., Ignasiak, Z., Sławińska, T., Piechura, J., & Ignasiak, T. (2014). Respiratory function, physical activity and body composition in adult rural population. Annals of Agricultural and Environmental Medicine, 21(2), 369–374.
Ruíz, J. R., España-Romero, V., Castro-Piñero, J., Artero, E. G., Ortega, F. B., Cuenca García, M., ... et al. (2011). Batería ALPHA-Fitness: test de campo para la evaluación de la condición física relacionada con la salud en niños y adolescentes. Nutrición Hospitalaria, 26(6), 1210-1214.
Sahin, G., Ulubas, B., Calikoglu, M., & Erdogan, C. (2004). Handgrip strength, pulmonary function tests, and pulmonary muscle strength in fibromyalgia syndrome: is there any relationship?. Southern Medical Journal, 97(1), 25-30.
Schweitzer, L., Geisler, C., Johannsen, M., Glüer, C. C., & Müller, M. J. (2017). Associations between body composition, physical capabilities and pulmonary function in healthy older adults. European Journal of Clinical Nutrition, 71(3), 389–394.
Shah, S., Nahar, P., Vaidya, S., & Salvi, S. (2013). Upper limb muscle strength & endurance in chronic obstructive pulmonary disease. The Indian Journal of Medical Research, 138(4), 492.
Shin, H., Kim, D. K., Seo, K. M., Kang, S. H., Lee, S. Y., & Son, S. (2017). Relation between respiratory muscle strength and skeletal muscle mass and hand grip strength in the healthy elderly. Annals of Rehabilitation Medicine, 41(4), 686-692.
Sillanpää, E., Stenroth, L., Bijlsma, A. Y., Rantanen, T., McPhee, J. S., Maden-Wilkinson, T. M., … et al. (2014). Associations between muscle strength, spirometric pulmonary function and mobility in healthy older adults. AGE, 36(4), 9667.
Smith, M. P., Standl, M., Berdel, D., Von-Berg, A., Bauer, C. P., Schikowski, T., ... et al. (2018). Handgrip strength is associated with improved spirometry in adolescents. PloS one, 13(4), e0194560.
Son, D. H., Yoo, J. W., Cho, M. R., & Lee, Y. J. (2018). Relationship between handgrip strength and pulmonary function in apparently healthy older women. Journal of the American Geriatrics Society, 66(7), 1367-1371.
Strandkvist, V. J., Backman, H., Röding, J., Stridsman, C., & Lindberg, A. (2016). Hand grip strength is associated with forced expiratory volume in 1 second among subjects with COPD: report from a population-based cohort study. International Journal of Chronic Obstructive Pulmonary Disease, 2527-2534.
Vivas-Díaz, J. A., Ramírez-Vélez, R., Correa-Bautista, J. E., & Izquierdo, M. (2016). Handgrip strength of Colombian university students. Nutrición Hospitalaria, 33(2), 330–336.
Zhu, R., Li, W., Xia, L., Yang, X., Zhang, B., Liu, F., … et al. (2020). Hand grip strength is associated with cardiopulmonary function in Chinese adults: Results from a cross-sectional study. Journal of Exercise Science & Fitness, 18(2), 57–61.
Wilson T. A. (2016). Respiratory mechanics. Springer International Publishing.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of ROL Sport Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.