Kan akışı kısıtlaması ile alt ekstremiteye uygulanan akut egzersizin algılanan efor, kan laktat seviyesi ve kardiyovasküler tepkiler üzerine etkileri


Özet Görüntüleme: 300 / PDF İndirme: 235

Yazarlar

DOI:

https://doi.org/10.5281/zenodo.7740792

Anahtar Kelimeler:

Algılanan efor, egzersiz, kan akışı kısıtlaması, kan basıncı, laktat

Özet

Bu çalışmanın amacı kan akışı kısıtlamalı (KAK) ve kan akışı kısıtlaması olmadan alt ekstremiteye uygulanan akut squat egzersizinin, egzersiz sonrasında kardiyovasküler tepkiler, kan laktat seviyesi ve egzersizin algılanan zorluk derecesinin etkilerini karşılaştırmaktır. Çalışma 30 (yaş 19,83±1,31 yıl) sağlıklı genç erkek katılımcıdan oluşmaktadır. Katılımcılar randomize olarak deney (KAK+ direnç egzersizi) ve kontrol (sadece direnç egzersizi uygulayan) grubu olmak üzere ikiye ayrılmışlardır. 1 Tekrar maksimum (RM)’larının %90’nında her sette iki tekrar ve setler arasında 3 dakikalık dinlenme aralığı ile toplam altı set boyunca squat egzersizini gerçekleştirmişlerdir. Egzersiz öncesi ve sonrası grupların kan laktat değerleri, kan basıncı ve algılanan efor dereceleri alınmıştır. Verilerin çözümlenmesinde tekrarlayan ölçümlerde varyans analizi (Repeated Measures ANOVA) ve bağımsız örneklem t testi kullanılmıştır. İstatistiksel analizlerde anlamlılık düzeyi p<0,05 olarak kabul edilmiştir. Araştırma sonuçlarına göre katılımcıların kan basıncı, laktat ve egzersizin algılanan zorluk derecelerinde kan akışı kısıtlaması ile uygulanan direnç egzersizi grubunun lehine anlamlı farklar elde edilmiştir. KAK’lı yöntemin geleneksel yönteme tamamlayıcı program olarak, seçilen bazı egzersizlerde kullanılması önerilebilir.

Referanslar

American College of Sports Medicine position stand. (2009). Progression models in resistance training for healthy adults. Medicine and Science in Sports and Exercise, 41(3), 687-708.

American College of Sports Medicine. (1991). Guidelines for exercise testing and prescription. Williams & Wilkins

Brandner, C.R., Kidgell, D.J., & Warmington, S.A. (2015). Unilateral bicep curl hemodynamics: Low‐pressure continuous vs high‐pressure intermittent blood flow restriction. Scandinavian Journal of Medicine & Science in Sports, 25(6), 770-777.

Borg, G.A. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise. 14(5), 377-381.

Burgomaster, K.A., Moore, D.R., Schofield, L.M., Phillips, S.M., Sale, D.G., & Gibala, M.J. (2003). Resistance training with vascular occlusion: metabolic adaptations in human muscle. Medicine and Science in Sports and Exercise, 35(7), 1203-1208.

Dankel, S. J., Buckner, S.L., Counts, B.R., Jessee, M.B., Mouser, J.G., Mattocks, K.T., ... et al. (2017). The acute muscular response to two distinct blood flow restriction protocols. Physiology International, 104(1), 64-76.

Early, K.S., Rockhill, M., Bryan, A., Tyo, B., Buuck, D., & McGinty, J. (2020). Effect of blood flow restriction training on muscular performance, pain and vascular function. International Journal of Sports Physical Therapy, 15(6), 892.

Fujita, S., Abe, T., Drummond, M.J., Cadenas, J.G., Dreyer, H.C., Sato, Y., ... et al. (2007). Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. Journal of Applied Physiology. 103(3).

Fry, C.S., Glynn, E.L., Drummond, M.J., Timmerman, K.L., Fujita, S., Abe, T., ... et al. (2010). Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. Journal of Applied Physiology, 108(5), 1199-1209.

Gentil, P., Oliveira, E., & Bottaro, M. (2006). Time under tension and blood lactate response during four different resistance training methods. Journal of Physiological Anthropology, 25(5), 339-344.

George, D., & Mallery. P. (2001). SPSS for windows step by step: A simple guide and reference 10.0 update. (3. Baskı). Boston: Allyn and Bacon.

Goldfarb, A.H., Garten, R.S., Chee, P.D. M., Cho, C., Reeves, G.V., Hollander, D.B., ... et al. (2008). Resistance exercise effects on blood glutathione status and plasma protein carbonyls: influence of partial vascular occlusion. European Journal of Applied Physiology, 104(5), 813-819.

Goto, K., Ishii, N., Kizuka, T. & Takamatsu, K. (2005). The impact of metabolic stress on hormonal responses and muscular adaptations. Medicine & Science in Sports & Exercise, 37(6), 955-963.

Karasar, N. (2012). Scientific research method. Ankara: Nobel Publications.

Karabulut, M., Abe, T., Sato, Y., & Bemben, M.G. (2010). The effects of low-intensity resistance training with vascular restriction on leg muscle strength in older men. European Journal of Applied Physiology, 108(1), 147-155.

Karabulut, M., & Garcia, S.D. (2017). Hemodynamic responses and energy expenditure during blood flow restriction exercise in obese population. Clinical Physiology and Functional Imaging, 37(1), 1-7.

Kawada, S., & Ishii, N. (2008). Changes in skeletal muscle size, fibre‐type composition and capillary supply after chronic venous occlusion in rats. Acta Physiologica, 192(4), 541-549.

Loenneke, J.P., Wilson, G.J., & Wilson, J.M. (2010a). A mechanistic approach to blood flow occlusion. International Journal of Sports Medicine, 31(1), 1-4.

Loenneke, J.P., Kearney, M.L., Thrower, A.D., Collins, S., & Pujol, T.J. (2010b). The acute response of practical occlusion in the knee extensors. The Journal of Strength & Conditioning Research, 24(10), 2831-2834.

Loenneke, J., Fahs, C.A., Rossow, L.M., Abe, T., & Bemben, M.G. (2012a). The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling. Medical Hypotheses, 78(1), 151-154.

Loenneke, J.P., Thrower, A.D., Balapur, A., Barnes, J.T., & Pujol, T.J. (2012b). Blood flow–restricted walking does not result in an accumulation of metabolites. Clinical Physiology and Functional İmaging, 32(1), 80-82.

Lowery, R.P., Joy, J.M., Loenneke, J.P., de Souza, E.O., Machado, M., Dudeck, J.E., … et al. (2014). Practical blood flow restriction training increases muscle hypertrophy during a periodized resistance training programme. Clinical Physiology and Functional Imaging, 34(4), 317-321.

Libardi, C. A., Catai, A. M., Miquelini, M., Borghi-Silva, A., Minatel, V., Alvarez, I.F., ... et al. (2017). Hemodynamic responses to blood flow restriction and resistance exercise to muscular failure. International Journal of Sports Medicine, 38(2), 134-140.

Madarame, H., Neya, M., Ochi, E., Nakazato, K., Sato, Y., & Ishii, N. (2008). Cross-transfer effects of resistance training with blood flow restriction. Medicine Science in Sports Exercise, 40(2), 258.

Manini, T.M., & Clark, B.C. (2009). Blood flow restricted exercise and skeletal muscle health. Exercise and Sport Sciences Reviews, 37(2), 78-85.

Neto, G.R., Novaes, J.S., Salerno, V.P., Gonçalves, M.M., Piazera, B.K., Rodrigues-Rodrigues, T., … et al. (2017). Acute effects of resistance exercise with continuous and intermittent blood flow restriction on hemodynamic measurements and perceived exertion. Perceptual and Motor Skills, 124(1), 277-292.

Pişkin, N.E., & Aktuğ, Z.B. (2022). Investigation of the Effect of Blood Flow Restriction Training Applied to the Lower Extremity on Leg Volume, Leg Mass and Leg Strength. International Journal of Sport Exercise and Training Sciences-IJSETS, 8(3), 82-93.

Pickering, T.G., Hall, J.E., Appel, L.J., Falkner, B.E., Graves, J.W., Hill, M.N., … et al. (2005). Recommendations for blood pressure measurement in humans: an AHA scientific statement from the Council on High Blood Pressure Research Professional and Public Education Subcommittee. The Journal of Clinical Hypertension, 7(2), 102.

Price, D.D., McGrath, P.A., Rafii, A., & Buckingham, B. (1983). The validation of visual analogue scales as ratio scale measures for chronic and experimental pain. Pain, 17(1), 45-56.

Poton, R., & Polito, M. D. (2016). Hemodynamic response to resistance exercise with and without blood flow restriction in healthy subjects. Clinical Physiology and Functional Imaging, 36(3), 231-236.

Reeves, G.V., Kraemer, R.R., Hollander, D.B., Clavier, J., Thomas, C., Francois, M., … et al. (2006). Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. Journal of Applied Physiology, 101(6), 1616-1622.

Renzi, C. P., Tanaka, H., & Sugawara, J.U.N. (2010). Effects of leg blood flow restriction during walking on cardiovascular function. Medicine and Science in Sports and Exercise, 42(4), 726.

Slysz, J., Stultz, J., & Burr, J. F. (2016). The efficacy of blood flow restricted exercise: A systematic review & meta-analysis. Journal of Science and Medicine in Sport, 19(8), 669-675.

Suga, T., Okita, K., Morita, N., Yokota, T., Hirabayashi, K., Horiuchi, M., ... et al. (2010). Dose effect on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. Journal of Applied Physiology, 108(6), 1563-1567.

Takarada, Y., Takazawa, H., Sato, Y., Takebayashi, S., Tanaka, Y., & Ishii, N. (2000). Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. Journal of Applied Physiology, (88), 2097–2106

Takarada, Y., Nakamura, Y., Aruga, S., Onda, T., Miyazaki, S., & Ishii, N. (2000b). Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. Journal of Applied Physiology, 88(1), 61-65.

Takarada, Y., Tsuruta, T., & Ishii, N. (2004). Cooperative effects of exercise and occlusive stimuli on muscular function in low-intensity resistance exercise with moderate vascular occlusion. The Japanese Journal of Physiology, 54(6), 585-592.

Takano, H., Morita, T., Iida, H., Asada, K.I., Kato, M., Uno, K., … et al. (2005). Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. European Journal of Applied Physiology, 95(1), 65-73.

Vieira, P. J., Chiappa, G.R., Umpierre, D., Stein, R., & Ribeiro, J. P. (2013). Hemodynamic responses to resistance exercise with restricted blood flow in young and older men. The Journal of Strength & Conditioning Research, 27(8), 2288-2294.

Vieira, A., Gadelha, A.B., Ferreira‐Junior, J.B., Vieira, C.A., de Melo Keene von Koenig Soares, E., Cadore, E. L., ... et al. (2015). Session rating of perceived exertion following resistance exercise with blood flow restriction. Clinical Physiology and Functional Imaging, 35(5), 323-327.

Wernbom, M., Augustsson, J., & Thomeé, R. (2006). Effects of vascular occlusion on muscular endurance in dynamic knee extension exercise at different submaximal loads. The Journal of Strength & Conditioning research, 20(2), 372-377.

Wernbom, M., Järrebring, R., Andreasson, M.A., & Augustsson, J. (2009). Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load. The Journal of Strength & Conditioning Research, 23(8), 2389-2395.

Wilk, M., Golas, A., Zmijewski, P., Krzysztofik, M., Filip, A., Del Coso, J., … et al. (2020). The effects of the movement tempo on the one-repetition maximum bench press results. Journal of Human Kinetics, 72(1), 151-159.

Yasuda, T., Abe, T., Brechue, W. F., Iida, H., Takano, H., Meguro, K., ... et al. (2010). Venous blood gas and metabolite response to low-intensity muscle contractions with external limb compression. Metabolism, 59(10), 1510-1519.

Yayınlanmış

03/20/2023

Nasıl Atıf Yapılır

Yalçın, S. (2023). Kan akışı kısıtlaması ile alt ekstremiteye uygulanan akut egzersizin algılanan efor, kan laktat seviyesi ve kardiyovasküler tepkiler üzerine etkileri. ROL Spor Bilimleri Dergisi, 4(1), 142–157. https://doi.org/10.5281/zenodo.7740792

Sayı

Bölüm

Araştırma Makalesi